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Empirical repulsive potential: 

An empirical repulsive potential is obtained using the 

experimental data for noble gases and has the 

form: 12r
BU repulsive = , where B is a positive constant. 

 

Lennard-Jones 6-12 potential: 

 

The total potential energy of the two atoms separated by r is the 

sum of the attractive and repulsive potential and can be 

expressed as: 

])()[(4)( 612

rr
rU σσε −= ,  

where A and B are defined as 64εσ=A and 124εσ=B . The 

parameters ε and σ are called the Lennard-Jones parameters 

and they depend on the polarizability and average dipole 

moment of an atom in addition to the extent of overlap. These 

are (ε and σ ), in turn, a measure of the strength of the attraction 

and the radius of the repulsive core, as determined by fitting 

data in the gaseous state. Table 9 shows the values of these 

parameters for some noble gases. The values of ε indicates the 

very weak binding of the solidified noble gases. The plot of 

Lennard-Jones 6-12 potential is shown in figure 58.  Also 

expressions for ε and σ can be written as: 
B

A
4

2

=ε   and 6
1)(

A
B

=σ , 

respectively. 
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The total potential energy of the crystal: 

Considering the atoms in the solid as a set of classical particles, 

localized with negligible kinetic energy at the points of the 

observed fcc Bravais lattice, the energy of interaction of the 

atom at the origin with all the others is∑
≠0

)(
R

RU
r

r
. When the total 

number of atoms in the crystal is N and avoiding to count the 

energy of a pair of atoms twice we get the total energy of the 

crystal as ∑
≠

=
ji

ijtot RUNU )(
2

r
, where the sum is over all nonzero 

vectors in the fcc Bravais lattice. The magnitude of the Bravais 

lattice vector ijR
r

can be defined as the distance between an ith 

atom and all other atoms j as rMR ijij =
r

, where Mij is a 

dimensionless number and r is considered here as the nearest-

neighbor distance. 

Figure 58: The Lennard-Jones 6-12 potential.
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The total energy per particle may have the expression: 

 

  ])()1()()1([2 661212

rMrM
u

ji ijji ij

σσε ∑∑
≠≠

−=  . 

 

This can also be expressed as ])()([2 m
m

n
n r

A
r

Au σσε −=  for n > 

m. 

Notes: 

1. ∑=
j

n
ij

n M
A 1  or ∑=

j
m
ij

m M
A 1  is the sum of the inverse nth or mth 

powers of the distance from a given Bravais lattice point to 

all others, where the unit of distance is taken to be the 

nearest neighbor distance. When n=12 , An is given to a 

tenth of a percent by the contributions from the nearest, 

next-nearest and third-nearest neighbors of the origin. The 

series ∑=
j ijM

A 1212
1   converges to a value of 12.13 or almost 

12. This represents the number of nearest neighbors in the 

fcc structure. However the second series ∑=
j ijM

A 66
1  may 

converge to the value 14.45 which departs from 12. The 

values of An for other cubic structures are shown in table 10. 

2. Thus it must be recalled that Mij is considered equal one 

when ijR
r

is the Bravais lattice vector joining nearest 

neighbors and An is the number of nearest neighbors when 

n approaches infinity]. 
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Table 10: The lattice sums An for the three cubic Bravais lattices. 

n Simple Cubic 
Body-centered 

cubic 

Face-centerd 

cubic 

≤ 3 ∞ ∞ ∞ 

4 16.53 22.64 25.34 

5 10.38 14.76 16.97 

6 8.40 12.25 14.45 

7 7.47 11.05 13.36 

8 6.95 10.36 12.80 

9 6.63 9.89 12.49 

10 6.43 9.56 12.31 

11 6.29 9.31 12.20 

12 6.2 9.11 12.13 

 

Equilibrium density of the solid noble gases: (Equilibrium lattice 

constants) 

The equilibrium nearest neighbor distance can be obtained 

when the total energy of the crystal (after neglecting the kinetic 

energy of noble atoms and considering only the cohesive 

energy of a noble gas as the Lennard-Jones potential) is 

minimized. Thus  

   )]()([2 11 ++ −−=
∂
∂

m
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mn
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Put n= 12, m = 6 to get the expression for the nearest neighbor 

distance in equilibrium ro as: σ6
1

6

12 )2(
A
A

r =o  

Substitute A12= 12.13 and A6= 14.45 for fcc structure we have ro= 

1.09 σ. 

Note: This value or ro= 1.09 σ is almost the same for all 

elements with fcc structures and is in agreement with the 

measured value, as seen in table 11.  The slight departure of 

this value for the lighter atoms from the predicted universal 

value for noble gases may be attributed to an effect of the zero-

point kinetic energy which has been neglected in the adopted 

approach. That is, energy increases when the volume of 

packing atoms gets smaller. The repulsive force becomes the 

dominant force which leads to an increase in the lattice constant 

far from the universal value. 

 

Equilibrium cohesive energy of the solid noble gases: 

 

The cohesive energy of the solid noble gases at absolute zero 

and at absolute pressure can be obtained when we substitute 

the equilibrium nearest neighbor distance, ro, into the 

expression for the energy per particle:
12

2
6

2A
A

u
ε

−=o  . Again when 

we substitute A12= 12.13 and A6= 14.45 for fcc structure we 

get ε6.8−=ou . This value is the same for all noble gases when 

the atoms are considered at rest. Quantum-mechanical 

corrections must be made (because the calculation was 
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conducted using elementary classical theory) to explain the 

small differences in the values of binding energies. 

 

 

 

 

Table 11: Other information for solid noble gases: 

Crystal 

Nearest 

neighbor 

distance ro 

(Experiment) 

(
o

A ) 

Nearest 

neighbor 

distance ro 

(Theory) 

(
o

A ) 

Experime-

ntal 

Cohesive 

energy uo 

(eV/atom)

Theoretical 

Cohesive 

energy uo 

(eV/atom) 

Bulk 

Modulus 

Bo 

(Expt.) 

(1010dyne/ 

cm2) 

Bulk 

Modulus Bo 

(Theory) 

(1010dyne/ 

cm2) 

Ne 3.13 2.99 -0.02 -0.027 1.1 1.81 

Ar 3.76 3.71 -0.08 -0.089 2.7 3.18 

Kr 3.99 3.98 -0.11 -0.12 3.5 3.46 

Xe 4.33 4.34 -0.17 -0.172 3.6 3.81 

 

Equilibrium bulk modulus of the solid noble gases: 

The bulk modulus is defined by: TV
PVB )(
∂
∂

−= . We know that the 

pressure at T=0 may be given by
dV
dUP −= , where U is the total 

energy. We can express the bulk modulus using the above 

relations, as follows: )(
V
U

V
VB

∂
∂

∂
∂

=  
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Also from the definition of the energy per particle as
N
Uu = , and 

the volume per particle
N
Vv = , the bulk modulus is rewritten as: 

2

2

)(
v
uv

v
u

v
vB

∂
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=
∂
∂

∂
∂

= .  

Using the chain rule we can show that 2

2

2)( r
u

r
v
vB

∂
∂

∂
∂

= . 

Note: The isothermal compressibility κ of solids is defined as 

the inverse of the bulk modulus and has the units in SI system 

as m2N-1. 

Example: Show that the bulk modulus at zero temperature for 

the solid fcc (noble gases) structure can be written in terms of ε 

and σ as: 3

75
σ
ε

=oB . 

Solution: 

To use the expression 2

2

2)( r
u

r
v
vB

∂
∂

∂
∂

= , we know that
24

33 rav == , 

and 2
9)(

4
2 r

r
v

=
∂
∂

. Thus the bulk modulus can be obtained at 

equilibrium when r= ro and has the expression:
orr

r
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r
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=
∂
∂

= 2

2

9
2

o

o . 

Now you need to find
orrr

u

=
∂
∂

2

2

. Take the second derivative of 

)]()1()()1([2 222

2

++ +−+=
∂
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r
Ann

r
u σσε and put n=12. 

m=6 and r= ro and ro=1.09 σ for fcc structure you may find 
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that 22

2

7.523
σ
ε

=
∂
∂

= orrr
u

. Finally this will give us 3

75
σ
ε

=oB  as 

requested. (See table 11 for comparing bulk modulus for 

different solid noble gases). 

 

 

 

 

 

 

 


